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Abstract

The Policy Research Working Paper Series disseminates the findings of work in progress to encourage the exchange of ideas about development 
issues. An objective of the series is to get the findings out quickly, even if the presentations are less than fully polished. The papers carry the 
names of the authors and should be cited accordingly. The findings, interpretations, and conclusions expressed in this paper are entirely those 
of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and 
its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent.
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Disasters affect millions of people each year and cause 
economic losses worth many billions of dollars globally. 
Reporting on disaster impacts in research, policy, and 
news primarily relies on macro statistics based on disaster 
inventories. The macro statistics suggest that a relatively 
small share of disaster damages accrues in Africa. This 
paper, instead, uses detailed survey micro-data from six 
African countries to quantify disaster damages in one key 
sector: crop agriculture. The micro-data reveals much 
higher damages and more people affected than the macro 
statistics would indicate. On average, 36 percent of the 
agricultural plots in the sample suffer crop losses due to 

adverse climatic events. In the countries and time period 
analyzed, these losses reduced total crop production by an 
average of 29 percent. Importantly, many of these losses are 
underreported or undetected in key disaster inventories and 
therefore elude macro statistics. In the case of droughts and 
floods, the economic losses recorded in the micro-data are 
$5.1 billion higher than in the macro statistics, affecting 
145 million to 170 million people, more than four times as 
many as the macro statistics suggest. The difference stems 
mostly from smaller and less severe but frequent adverse 
events that are not recorded in disaster inventories.

This paper is a product of the Development Data Group, Development Economics. It is part of a larger effort by the 
World Bank to provide open access to its research and make a contribution to development policy discussions around the 
world. Policy Research Working Papers are also posted on the Web at http://www.worldbank.org/prwp. The authors may 
be contacted at pwollburg@worldbank.org.  
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Introduction 
In 2022, natural disasters led to over $220 billion in economic losses, affecting 185 million people.1 Losses 
in 2023 are on track to exceed the previous year’s2 and large-scale disasters, such as record extreme 
heatwaves, the violent monsoon in India, and a prolonged severe drought in the Horn of Africa have 
received widespread media and public attention.3–6 The frequency and intensity of disasters and their 
impacts has increased over the last decades, a trend that is set to continue, and likely accelerate, due to 
climate change and global warming.7–12 

Reporting on disaster impacts relies predominantly on macro statistics. A key data source is the 
Emergency Events Database (EM-DAT), which is a publicly available global inventory of disaster impacts 
that is widely used in media,13 research,14 and policy reports, including recently the World Bank’s 2023 
‘Atlas of the Sustainable Development Goals’ and the Food and Agriculture Organization’s (FAO) 2021 
report on ‘The impact of disasters and crises on agriculture and food security.’15,16  

Here, we offer a different approach to studying disaster impacts, based on survey micro-data. We quantify 
the value of crop production losses due to adverse climatic events on more than 120,000 fields across six 
African countries and study the impacts of these events on African agriculture, rural populations, and the 
national economies. Agriculture is a key sector,  on which many households in the region depend for their 
livelihoods, especially the poor and rural households.17 Agriculture dependent households are thought to 
be particularly at risk of suffering the impacts of climate change and adverse shocks. Climate change and 
natural disasters are expected to be especially severe in rural areas in this region,18,19 while smallholder 
agricultural production remains predominantly rainfed and the adoption of drought or heat resistant 
seeds or other such climate-smart technologies is limited.20 

We document that crop losses due to adverse shocks are common and costly both to individual farm 
households and to the economy at large, and that farmers often suffer multiple shocks in the same season. 
Taken together, production losses have a substantial aggregate impact. Importantly, these events and 
their impacts are underreported or undetected in common macro data sources for disaster reporting, 
such as EM-DAT. 

Our analysis of micro-data offers an important complementary perspective to analyses based on 
aggregate statistics derived from disaster inventories. Aggregate statistics are critical to the study of 
disaster impacts, providing annual data at a global scale. They are less well-suited to capture the 
differential impacts of disasters on different population groups, especially poor and vulnerable people.21–

23 This is because they account primarily for damages to assets and losses in agricultural production whose 
value is greater and better documented among richer households and in richer countries. For instance, 
according to the most recent estimates of EM-DAT, about 70% of economic losses due to disasters 
occurred in the Americas, compared to just under 4% in Africa.24 A recent study using the same data 
source concluded that disaster impacts do not affect poor people as much as the general population.25 In 
contrast, evidence from survey micro-data suggests that poorer households and individuals are more 
exposed and less resilient to adverse climatic and environmental shocks and suffer disproportionately 
greater well-being losses than better-off households.18,22,26 Our analysis suggests that production losses 
due to adverse climatic events are meaningful not only for the well-being of low-income households 
individually but, because of how many households are affected, they are significant also for the whole 
economies of our study countries and on a global scale. 
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Results 
Crop losses are widespread and significant 

The data used in this analysis is from the Living Standards Measurement Study-Integrated Survey on 
Agriculture (LSMS-ISA) in Ethiopia, Malawi, Mali, Niger, Nigeria, and Tanzania. These data were 
harmonized across countries and cover close to 120,000 fields on around 30,000 farms. The data show 
that crop losses due to disasters and adverse climatic events are widespread and significant in African 
smallholder agriculture. Farmers report crop losses on between 11% (Nigeria 2018/19) and 90% of plots 
(Niger 2011), depending on country and year (Figure 1, Panel A and Table 1). Overall, 36% of plots in our 
sample report a crop loss. Farmers reported losing, on average, 53% of their harvest on plots affected by 
crop shocks (Panel B and Table 1).  Losses vary across countries and years, ranging from 48% of harvest 
(Ethiopia 2018/19) to 71% of harvest (Niger 2011). Disaster losses have also become more common over 
time (Table 3). In the 11 years from 2008 to 2019 that our dataset spans, the estimated likelihood of a 
plot incurring a disaster loss increased by close to 10 percentage points. This is seemingly driven by a 
higher prevalence of small shocks as the estimated share of harvest lost on plots with any loss decreased 
by on average 1.1 percentage points with every year studied.  

In aggregate, crop losses due to adverse climatic events reduce the total national crop production by 
between 3% in Nigeria 2018-19 and 81% in Niger in 2011. A total of 29% of potential harvest value is lost 
across the countries and agricultural seasons observed in our dataset (Figure 1, Panel C and Table 4]). 
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Figure 1. Panel A displays the prevalence of crop shocks on plots across country-waves. Panel B displays the mean percent of 
potential harvest value lost on plot, by country-wave, as well as the fraction of aggregate potential harvest lost (valued with 
current prices), per country-wave 

A 

 
B 

 
 

 

Crop production is impacted by multiple shocks 

Farmers face a diversity of adverse climatic shocks. Multiple shocks are recorded to affect agricultural 
production in each year and across all countries (Table 1). There are also some instances of multiple shocks 
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affecting the same farm in a given agricultural season (Table 5). This ranges from 1.5% of farms (Tanzania 
2014) to 21% of farms (Ethiopia 2018-2019).  

Overall, drought is the most common shock, with 22% of plots in our sample recording a crop loss due to 
drought (Table 1). One in ten plots records losses due to irregular rains, meaning erratic rainfall at unusual 
times in the agricultural season. Pests are also widespread across our sample, affecting 6.3% of all plots. 
Still, there is substantial variation across countries and years. The severity of the damages caused varies 
between different events (Table 2). Floods in particular cause more damage than other shocks, reducing 
crop production per plot on average by 62%. Losses from pests and irregular rains tend to be smaller. 
However, there is again some variation between different countries and farming environments (Table 6).  

Which shocks are the most prevalent varies also within countries. Figure 2 illustrates this for selected 
countries and years, showing the most reported events by subnational administrative divisions. There is 
some geographical clustering, but we commonly see different events accounting for most of the impacted 
plots in different areas of the same country in the same year. This is true even in years with exceptionally 
severe disasters such as the droughts in Niger in 2011 and Ethiopia in 2015-16 where the vast majority 
but not all areas of the country recorded drought as the primary loss reason. 

 

Figure 2. Most common disaster events by administrative unit, selected countries and years 
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Crop losses differ locally and between farmers 

Not all farmers and plots are equally affected. Some are less likely to experience a loss even in the face of 
an adverse climatic event. Here we show that shock exposure and impacts can differ even between 
neighboring plots in the same area. We limit this analysis to droughts. Given the nature of droughts, all 
plots in the same small geographic cluster should be faced with the same drought shock – but the impacts 
of that drought can differ. Indeed, in 41% of the geographical clusters in our sample, some but not all plots 
report being affected by a drought (Table 12). This finding holds also for plots growing the same crops. In 
31% of clusters, some but not all maize plots suffer drought losses (32% for sorghum plots and millet 
plots). The result extends to plots with the same crops cultivated by the same households (Table 13):  for 
farms that record a drought shock on one of their maize plots, close to two-thirds of other maize plots on 
the same farm also record drought-related crop losses. 

These findings suggest that disaster impacts are highly localized, consistent with the high spatial 
concentration that meteorological events can have.28 Further, idiosyncratic factors, such as land 
characteristics and management practices, and happenstance play a role in determining whether and how 
much production is affected. We find that plot elevation is negatively associated with the likelihood of 
experiencing losses and the size of the losses incurred (an effect almost twice as strong for floods 
compared to other disasters), while smaller plots are less likely to suffer losses but record higher losses 
when they are affected (Tables 7 and 8). Losses on intercropped plots are 7.5 percentage points lower 
than on mono-cropped plots, though intercropped plots are more likely to experience a loss in the first 
place (+3.6 percentage points). Plots farmed in more input and technology intensive ways appear more 
resilient to crop losses due to adverse events.  

Disaster exposure and impact also vary according to who manages the plot. Plots managed by women are 
more often affected by disaster losses (+2.2 percentage points) than plots managed by men and these 
losses are also larger on average (+4.4 percentage points; Table 10). These differences are likely because 
plots managed by women are endowed and farmed differently than plots managed by men, which in turn 
may follow from differential access to inputs and land between women and men.27  

 

Aggregate data sources underestimate impacts of extreme events on crop production  

How do disaster impacts as captured in the survey data compare to estimates from other commonly used 
data sources? Here, we contrast the results from the survey microdata with publicly available estimates 
of disaster impacts from the Emergency Events Database (EM-DAT). EM-DAT aggregates reports from UN 
agencies, governments, insurance companies, research institutes and the media into a global inventory 
of disaster impacts.29 EM-DAT is the preeminent and only publicly available data source of this kind, used 
widely in disaster reporting and research.30 We focus on two disaster types, droughts and floods, and 
compare two estimates: the number of people affected and the total economic damages caused in the 
years which the survey micro-data covers. We create aggregate figures from the micro-data using 
population sampling weights.  

On both metrics, and for both drought and flood impacts, the micro-data estimates on average exceed 
the EM-DAT estimates, that is, for years in which there is information from both sources, the survey micro-
data find more people affected and higher damages from droughts and floods (Figure 3 and Tables 14 and 
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16). Moreover, there are many instances in which the EM-DAT records no disaster impacts at all. This is 
true especially for droughts, where the microdata suggests that droughts are prevalent to some degree 
across every country-year combination covered, while EM-DAT records droughts affecting the population 
in only a third of cases. Estimates of the economic value of disaster impacts are mostly missing in the EM-
DAT data for the study countries, even in years when drought and flood events were recorded to affect 
the population in the study countries (Tables 15 and 17). 

Large, salient drought and flood episodes have better coverage in the EM-DAT, such as the severe 
droughts in Niger in 201131,32 and Ethiopia in 2015-16,33,34 or the droughts and floods Malawi in 2015-
16,35,36 which were widely covered in international media at the time. The events that go unreported in 
EM-DAT are smaller, on average, in terms of the population affected and the damages caused. However, 
we show that such smaller, under-covered events have substantial overall impacts. More than a fifth of 
the population suffered production and income losses in the droughts in Malawi in 2009-2010 and in Mali 
in 2074, according to our micro-data estimates, while there is no coverage of these events in the EM-DAT 
for the same years. Overall, we estimate the total number of people affected by droughts or floods in all 
instances covered by the microdata is between 145 million and 170 million, more than 4 times higher than 
what is reported in the EM-DAT for the same periods and the same shocks. 

The micro-data analysis suggests that the aggregate value of the disaster impacts on crop production is 
substantial. For the drought in Ethiopia in 2015-2016, the micro-data crop loss estimates are much larger 
than the total economic damage reported in the EM-DAT. For the 2014 floods in Niger, the estimated 
value of crop losses exceeds the total damage reported in the EM-DAT data by almost USD 78 million (in 
2022 USD values). In the other years there is no damage estimate in EM-DAT, but our survey micro-data 
documents even some large disaster impacts, such as in Niger in 2011 and Ethiopia in 2018-2019 with 
estimated losses of USD 1.6 billion and USD 1.4 billion, respectively. Taken together, we estimate that 
across the countries and years captured in the microdata, there were USD 5.1 billion in drought and flood 
damages unaccounted for in the EM-DAT data (Table 18).  

What explains these discrepancies? Disaster inventories such as EM-DAT and survey microdata differ in a 
number of meaningful ways. Most importantly, disaster inventories do not measure shock impacts 
themselves but instead aggregate data from government sources, humanitarian organizations, the media, 
and others. They therefore rely on the comprehensiveness and accuracy with which shocks due to natural 
hazards are covered by one or more of these sources.30,37 Less salient events as well as those affecting 
marginalized population groups are less likely to be reported on and less likely to have detailed 
information on the affected population or economic and welfare impacts.37–40 This is particularly acute in 
LMICs where the density of information for disaster repositories to draw on is much lower and a large 
share of damages is uninsured.30,37 Shocks in LMICs in general and smaller events (in terms of intensity or 
the population affected)  in particular are more likely to have incomplete or inaccurate information in 
disaster repositories or are not covered at all.30,37,41,42 Microdata such as the LSMS-ISA measure shock 
impacts on smallholder farmers where they occur by asking farmers directly. They therefore do not suffer 
from the same limitations regarding the recording of smaller, less salient, or more localized shocks and 
their impacts as disaster repositories. 

Smaller shocks or adverse climatic events may not be considered disasters as disasters suggest a minimum 
level of severity. For an event to be recorded in the inventory, the EM-DAT requires a minimum of 100 
people to be affected (injured, homeless, in need of immediate assistance) or an official declaration of 
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emergency or appeal for international assistance – arguably a sensible set of criteria for a disaster 
inventory. Not all events recorded in the micro-data meet these requirements. Importantly, the events 
recorded in the micro-data have substantial impacts on the livelihoods of farmers and the economies of 
the study countries.  

At the same time, micro-data has drawbacks and limitations. First, it is rare that microdata in low- and 
middle-income countries are available annually, with surveys typically implemented every few years. 
Shock coverage and detail depend on the survey design, which typically differs from country to country. 
Finally, microdata does not provide the same cross-country coverage as disaster repositories. With these 
limitations, the microdata naturally also provides an incomplete picture (see discussion in Appendix A). 
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Figure 3. Comparison of shock prevalence and impact between EM-DAT and LSMS-ISA data.  

A 

 

B 

 

  
C 

 

D 

 

  
Note: Panel A displays a comparison of the total estimated individuals affected by droughts between EMDAT (in blue) and LSMS-ISA data (in 
orange), while panel B shows a comparison of the estimated damages (in millions of 2022 dollars), in years where damages could be estimated 
in the LSMS-ISA surveys. Panel C displays a similar comparison for floods, in years where floods are listed as a potential shock in the LSMS-ISA 
data, while panel D shows a comparison of estimated damages from floods. Confidence intervals for panels B and D were calculated before log-
transformation, and are hence asymmetrically situated around log-scaled point estimates. 

 

Discussion 
We explore the crop production impacts of adverse climatic events on 120,000 fields on 30,000 
smallholder farms in Sub-Saharan Africa. Smallholder agriculture is of special interest for achieving SDGs 
1 and 2 as it remains the primary means of livelihood for many of the world’s poor.43  

Our findings generate new insights and advance our understanding of the disaster risks and losses that 
smallholder farmers face. Other studies have investigated the vulnerability of smallholder farmers to 
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disasters and environmental shocks.44–47 These studies have mostly focused on single geographies and 
stopped short of quantifying the value of disaster related losses in smallholder agriculture. Other studies 
have relied on macro-data from disaster inventories to assess the impact of disasters on agriculture.14 

Here we offer a cross-country perspective using harmonized survey micro-data from six African countries. 
We value crop production losses to assess the economic importance of disaster impacts on rural 
households and African agriculture and the regional economies more broadly. The analysis shows that 
disaster related crop production losses among African smallholder farmers are widespread and 
significantly reduce the production of affected farms. In any given year, between 18% and 94% of crop-
farming households suffer such crop losses and on average 53% of plots’ harvest potential is lost when 
they are hit by adverse shocks.  

In aggregate, disaster impacts reduce the national crop production by 29% every year on average and by 
up to 81% in years with large-scale disasters. These results show that crop production losses due to 
adverse climatic events are significant both for individual farms and for the entire sector and the study 
countries’ economies.  

We show that the EM-DAT disaster inventory misses out on a meaningful share of disaster impacts in the 
agricultural sector in Africa when compared to the micro-data analysis. The micro-data captures many 
smaller, more localized disaster events, which are less salient and therefore less likely to be reported on 
and register in the disaster inventory.37,48 At the same time, disaster impacts are more likely to be missing 
entirely in lower-income settings.30 Our analysis shows that less salient and underreported disaster events 
still have significant economic impacts.  

The findings have implications for policies and interventions aimed at disaster risk reduction and resilience 
building. For such policies to be effective, it is important to recognize the risks from less salient and under-
reported adverse events and offer ways to insure households’ livelihoods against their impacts. The 
findings also have implications for research and measurement. Research and analysis using aggregate 
global data such as EM-DAT are likely missing some disaster impacts in poorer countries and among poorer 
people. This concerns also tracking progress towards the SDGs, in particular SDG target 1.5, which seeks 
to reduce the vulnerability of the poor to extreme weather events, and SDG target 13.1, which seeks to 
strengthen resilience and adaptive capacity to climate-related hazards and natural disasters in all 
countries.15 Survey micro-data such as the LSMS-ISA have more limited country and temporal coverage. 
Inventory and survey data offer complementary perspectives on disaster impacts and combining both 
sources will likely yield a more complete and nuanced understanding of the issue that will promote more 
effective policy design. In particular, information on disaster impacts from survey micro-data could be 
incorporated systematically into disaster inventories. Improving micro-data systems is key to 
systematically utilizing micro-data for monitoring and reporting of emergency events. More flexible and 
higher frequency data collection is needed to provide better temporal coverage and account for disaster 
impacts when they occur. Phone surveys, which have only recently become more widely adopted in low-
income settings, may provide this function, for instance as part of mixed-mode survey systems that 
combine traditional in-person surveys with data collection over the phone.49 Integration of geospatial data 
can improve spatial coverage and facilitate better identification of natural hazards and disaster 
occurrence.50,51 Sampling protocols of household surveys can be optimized to better capture disaster 
impacts and greater harmonization of survey methods and measurement instruments in line with best 
practices can benefit data quality.  
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Our study faces several limitations. The valuation of losses relies on human reporting which is subject to 
human error, respondents’ incentives, misreporting, and misperceptions. The data allows for a detailed 
analysis of disaster impacts on crop production, but other aspects of disaster impacts on agriculture are 
absent. This concerns, for example, damages to agricultural assets, storage losses, or impacts on livestock. 
Further, the data is representative of the household sector in study countries but misses commercial and 
larger farms. This implies that we are likely underestimating the full extent of disaster crop losses. As the 
analysis is focused on agriculture, we do not discuss damages incurred in other sectors. 

 

Methods 
 

A. LSMS-ISA microdata 

We use plot-level survey data from the Living Standards Measurement Study – Integrated Surveys on 
Agriculture (LSMS-ISA) in Ethiopia, Malawi, Mali, Niger, Nigeria, and Tanzania. The LSMS-ISA comprise a 
series of harmonized, national, multi-topic household panel surveys with a distinct focus on agriculture. 
We harmonized data on agricultural outputs, inputs, and plot characteristics for close to 30,000 
households over the six countries for a total of 18 survey waves collected between 2008 and 2019. The 
combined dataset contains over 120,000 plot observations. More specifically, the dataset includes data 
from the Ethiopian Social Survey (waves 1 to 4), Malawi’s Integrated Household Panel Survey (waves 1 to 
4), Mali’s Enquête Agricole de Conjoncture Intégrée (waves 1 and 2), Niger’s Enquête National sur les 
Conditions de Vie des Ménages et Agriculture (waves 1 and 2), Nigeria’s General Household Survey (wave 
4) and Tanzania’s National Panel Survey (waves 1 to 5). Households are selected to be representative of 
the population at the national and sub-national level using a two-stage stratified sampling design with 
census enumeration areas (EAs) as primary sampling units and households as secondary sampling units. 
Households are then tracked through time, except for Mali which only tracks enumeration areas (EAs). 
Each survey wave covers an agricultural production cycle or season. 

B. EM-DAT aggregate data 

We compare survey estimates to country-level data from is the Emergency Event Database (EM-DAT). EM-
DAT is the preeminent public database taking stock of shocks on a global scale and widely used for 
research and to inform policy52. Both natural (e.g., geophysical, meteorological) and technological (e.g., 
industrial accidents) events are recorded, along with information on disaster damages valued in 2022 USD. 
The EM-DAT compiles information from a broad range of sources including insurance companies, 
international organizations, press agencies and governmental agencies. Disasters are recorded if they 
provoke 10 or more deaths, affect 100 or more people (injured/ homeless/ in need of immediate 
assistance) or are accompanied by an official declaration of emergency or appeal for international 
assistance.29 

C. Variable construction 

Valuation of crop production 

Plot-level crop production was calculated using survey variables which were collected after the harvest in 
each season and country. Farmers report harvest quantities for each seasonal crop grown on each plot.  
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The harvest quantity on each plot was then valued using a set of constant crop prices. Specifically, each 
price corresponds to the median crop sale price calculated in one survey round in each country. Applying 
constant prices for each crop-country combination eliminates the effect of relative price fluctuations over 
time. This allows us to isolate the impact of disasters on harvest quantity rather than measuring their 
impact on quantity and prices. An alternative approach was used to calculate and report aggregate losses, 
such as in Table 4 and Figure 3. In these cases, country and wave specific prices were calculated, by 
estimating median farmer sale prices for different crop types. This was done to reflect losses as they were 
perceived by farmers in the year of the shock. Whether current or constant, harvest values are initially 
calculated in local currency units and then converted and adjusted to 2020 USD using exchange rates and 
a CPI drawn from a library of the World Bank World Development Indicators. 53 Yields, defined as the value 
of production per hectare, were obtained by dividing the total harvest value on the plot by GPS-measured 
plot area.  Finally, yields are winsorized at the 1st and 99th percentiles (while allowing full losses to be equal 
to 0). 

Identification of disaster events and loss size 

Identification of disaster events is based on farmers reporting crop production losses before harvest for 
each crop on each of their plots. Specifically, for each crop cultivated on each plot, farmers are asked 
whether the area harvested was less than the area planted, i.e. if some of their crop has been lost, along 
with the cause of the loss in harvested area. In Ethiopia, farmers are further asked whether the crops they 
harvested had any damage on them and what the cause of damage was. We define disaster crop losses 
as any loss in crop area or any damage on the crops harvested due to climatological (drought, irregular 
rain, hail, wildfire), hydrological (flood) or biological (insect infestation, disease) reasons. This does not 
include losses due conflict, unavailability of inputs or other household or socio-economic events. We 
denote a plot with a disaster loss as any plot for which at least one crop on the plot had a disaster-induced 
loss. 

To calculate the size of disaster losses, we use farmers’ reports of the share of the planted area lost due 
to disasters and, where available, the percent of damage on crops that were harvested. To determine the 
potential harvest that could have been achieved in the absence of disaster losses, we employ the 
methodology proposed by the Food and Agriculture Organization (FAO).54,55 This means determining the 
realized harvest for each crop on the plot, as described in the preceding section, and scaling it up in 
proportion to the planted area lost and degree of damage on the crop that is attributed to disasters. The 
quantity lost equates to the difference between the potential harvest without disaster losses and the 
realized harvest. To aggregate losses across crops, we value loss quantity of each crop on each plot using 
a constant set of prices, which we then convert to 2020 US dollars. In order to correct for outliers in the 
self-reported data, we winsorize these loss values at the 99th percentile. 

Equation (1) formalizes the construction of the plot-level loss aggregate. 
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Where the value of harvest loss on plot i in agricultural season s is equal to the difference between the 
potential harvest in the absence of disasters, 𝑌𝑌𝑝𝑝 and the realized harvest reported by the farmer 𝑌𝑌𝑟𝑟. The 
potential harvest is calculated by scaling up realized harvest in proportion to the share of the planted area 
lost to disasters, 𝑙𝑙𝑖𝑖,𝑗𝑗,𝑠𝑠 , and the percent of damage on the crop, 𝑑𝑑𝑖𝑖,𝑗𝑗,𝑠𝑠 . The quantity lost is then valued in 
terms of the median selling price for crop j in the country p and aggregated at the plot level across all 
crops on the plot. 

Imputation of full losses 

In case the harvest for a crop on a plot is fully lost (i.e., 𝑙𝑙𝑖𝑖,𝑗𝑗,𝑠𝑠 = 1 or 𝑑𝑑𝑖𝑖,𝑗𝑗,𝑠𝑠 = 1), Equation (1) is not defined. 
Instead, we estimate the quantity lost in these cases by imputing potential harvest values using a Gaussian 
normal regression imputation method.56 To this end, we define a model where potential harvest is the 
outcome variable, regressed on the set of explanatory variables, along with country and crop fixed effects. 
The explanatory variables used in the imputation are the following: (i) agricultural input variables, 
specifically, plot area, non-hired labor days spent working on the plot (e.g., family labor), as well as hired 
labor value, inorganic fertilizer value and seed value. In similar fashion to the production values described 
above, a constant set of prices was computed within each country, based on median purchase prices. 
These input variables are all expressed in per hectare terms, winsorized  and logged; (ii) an agricultural 
asset index was computed using a principal component analysis based on an inventory of household 
assets; (iii) plot-level dummy variables were included to indicate if a plot is irrigated, pesticides are used, 
organic fertilizers are applied, the plot is intercropped, and if the plot is owned by the household; (iv) 
gender of the primary decisionmakers on each plot; (v) household-level variables household size and 
dummies for livestock ownership, electricity access and urban/rural residence; (vi) finally, a set of 
geophysical variables consisting of plot elevation, a topographic wetness index, and the distance of the 
household from the closest population center and closest road. 

Our final imputed value is obtained by calculating the mean of 100 imputations. 

Table 19 contains an overview of the available data and variables for each country and agricultural season 
covered. 

 

D. Estimation 
i. Disaster crop losses in Sub-Saharan Africa  

Our main descriptive analysis of disaster prevalence and intensity is conducted at the plot-level and 
involves the estimation of means, proportions, and frequencies at the national level as well as pooled 
across countries. These estimates, as well as any household-level estimates of disaster exposure formed 
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by aggregating across plots belonging to the same farm, are weighted using the probability weights 
described in a separate section below (Sampling weights).  

 

ii. Disaster type and frequency 

Similarly, our estimates of the prevalence of different shock types is conducted at the plot-level and 
involves the estimation of frequencies at the national level and pooled across countries using the 
household sampling weights. Our estimates of the most common shock type within enumeration areas 
are based on simple, unweighted frequencies. 

 

iii. Heterogeneity in disaster impacts across farms 

Our multivariate analysis focuses on two main outcome variables: a binary variable indicating any disaster 
crop loss and a continuous variable denoting the percentage share of the total potential harvest that was 
lost to disasters. We estimate all models with the binary crop loss indicator as outcome variable via 
maximum likelihood using logistic regression. Models with the percent share of harvest lost as outcome 
variable are estimated via ordinary least squares regression. Our independent variables for these 
multivariate regressions are comprised of plot characteristics (plot size, elevation, a topographical 
wetness index, an indicator for ownership of the plot, and main crop fixed effects), as well as plot 
management (hired labor and fertilizer input use, irrigation, intercropping), plot manager (age, gender, 
and education), and household characteristics (urban/rural residence, an indicator for livestock farming, 
and electricity access). Models pooling the sample across countries further include country fixed effects. 
We also conduct multivariate analysis using a binary variable capturing the gender of the plot manager as 
outcome variable and plot- and plot-management characteristics as independent variables. As before, all 
multivariate regressions are weighted using the sampling weights. 

 

iv. Different disaster impacts on neighboring plots  

Our analysis of differences in drought impact within the same enumeration areas first determines whether 
some but not all plots belonging to the same enumeration area recorded a drought loss and then 
estimates the simple, unweighted proportion of enumeration areas for which this is the case. Our analysis 
of within-household differences in shock impacts first limits the sample to households with multiple maize 
plots and where at least one of the household’s maize plots recorded a drought shock. We then calculate 
the share of remaining maize plots belonging to the same household that also record a drought loss and 
report a simple, unweighted average of this share across households for each country and year. 

 

v. Comparison of survey micro data with aggregate sources 

Our estimates of the number of people affected by disasters and aggregate economic losses are totals at 
the national level and employ the household-level sampling weights. 
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In order to the compare drought and flood impacts using LSMS-ISA data with those using EM-DAT data, 
we use two metrics: the share of individuals “affected” by the shock and the estimated total value of 
damages. Since the LSMS-ISA surveys run every two to three years, we only retain events in the EM-DAT 
database for which the start or end date is within a year containing LSMS-ISA data. The comparison for 
flood shocks is possible in fewer countries and years due to limitations in the microdata questionnaire’s 
scope in some cases (Table 18). 

In order to compute the total number of individuals impacted by a shock within a specified period in the 
EM-DAT database, we aggregate the total number of people “affected” by the shock in the macro data. 
Affected persons are those that are reportedly injured, homeless, or otherwise in need of “immediate 
assistance.”29 To estimate the total number of individuals affected by a shock in the LSMS-ISA microdata, 
we construct population weights by multiplying household weights by household size. These weights are 
then used as expansion factors, which we multiply by a dummy variable equal to one in the household 
report a shock on any of its cultivated plots. We then add up this product to calculate an expansion 
estimator.57,58  

To obtain shares of the total population, the numbers of individuals affected in both EM-DAT and the 
LSMS-ISA data are divided by total yearly population estimates drawn from a library of the World Bank 
World Development Indicators.53  

We then compute the estimated damages from both droughts and floods in the periods and years covered 
by LSMS-ISA data. We first aggregate the “total damages” estimated in the EM-DAT database, defined as 
the values of total losses “directly or indirectly related to the disaster”, in 2022 USD values. Using LSMS-
ISA microdata, we aggregate the estimated value of crop losses for each household. In this case, the value 
of losses is calculated by multiplying the potential value of total output using current prices by the 
estimated percentage of output lost at the plot level. Contrary to the rest of our analysis, we do not apply 
a common set of prices to value output and losses, but rather median crop prices faced by farmers at the 
time of their crop production. The loss values are then converted to 2022 USD values, in order to allow 
comparison with EM-DAT data. As above, we use population weights as expansion factors, that we 
multiply with our loss value estimates.57,58 

 

Sampling weights 

In the survey data, household sampling weights are used to compute estimates that are representative of 
the national or subnational population. These reflect the inverse probability of selection into the sample, 
are adjusted to account for non-response and survey design choices, and are post-stratified to ensure that 
they sum to known household population totals.59 

Moreover, a further adjustment was made to ensure that the weights in the study sample sum to the total 
population of households, because only a subset of LSMS-ISA households report cultivating seasonal 
crops. More formally, we can define a set of households indexed by ℎ (where ℎ = 1, … ,  𝑁𝑁1) within a 
country-wave, where each household is associated with a sample weight 𝑊𝑊ℎ. After restricting the dataset 
to households that cultivate crops, the total number of households in the country-wave drops from 𝑁𝑁1 to 
𝑁𝑁2, and weights are adjusted such that:  
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𝑤𝑤ℎ =
𝑊𝑊ℎ

𝑝𝑝ℎ
 × 

∑ 𝑊𝑊ℎ
𝑁𝑁1
ℎ=1

∑ 𝑊𝑊ℎ
𝑁𝑁2
ℎ=1

 

Where 𝑝𝑝ℎ denotes the number of plots in household ℎ on which seasonal crops are grown, and 𝑤𝑤ℎ is the 
final adjusted weight. 

The resulting weights were used to compute estimates in our analysis. Wherever population means are 
estimated, the standard errors provided with the estimate takes into account the clustered and stratified 
sampling design.57 All regression models with continuous variables as outcomes are estimated using 
ordinary least squares regression, while regressions with binary outcomes are estimated via maximum 
likelihood using a logistic regression model. 
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Appendix  

Table 1: Frequency of plots recording a shock, by country-year 

Country Year 
Frequency of plots 

recording a disaster 
shock 

Frequency of plots recording 
a drought shock 

Frequency of plots 
recording a flood shock 

Frequency of plots recording an 
irregular rain shock 

Frequency of plots 
recording a pest shock 

   All plots Disaster 
plots All plots Disaster 

plots All plots Disaster plots All plots Disaster plots 

Ethiopia 

2011 - 2012 31.19 % 16.96 % 55.16 % missing missing 11.39 % 37.41 % 4.89 % 16.06 % 
2013 - 2014 28.32 % 11.14 % 40.14 % missing missing 9.94 % 36.60 % 7.35 % 30.52 % 
2015 - 2016 53.83 % 41.89 % 78.29 % missing missing 17.55 % 34.88 % 3.48 % 7.97 % 
2018 - 2019 39.76 % 19.81 % 50.63 % missing missing 14.15 % 37.17 % 6.95 % 21.12 % 

Malawi 

2009 - 2010 40.40 % 24.34 % 60.26 % missing missing missing missing 1.05 % 2.61 % 
2012 - 2013 36.82 % 8.18 % 22.22 % 8.64 % 23.47 % 17.80 % 48.33 % 2.85 % 7.75 % 
2015 - 2016 64.54 % 30.77 % 47.68 % 1.06 % 1.56 % 40.61 % 62.92 % 2.21 % 3.42 % 
2018 - 2019 47.18 % 5.60 % 11.86 % 21.65 % 45.81 % 19.77 % 41.91 % 7.97 % 16.76 % 

Mali 2014 18.59 % 14.44 % 77.71 % missing missing 1.75 % 9.41 % 1.05 % 5.63 % 
2017 24.07 % 22.78 % 94.64 % missing missing 0.45 % 1.89 % 3.08 % 1.97 % 

Niger 2011 89.88 % 65.81 % 73.22 % 0.64 % 0.71 % missing missing 27.69 % 30.81 % 
2014 40.11 % 23.43 % 58.41 % 2.75 % 6.86 % missing missing 11.08 % 27.63 % 

Nigeria 2019 11.39 % 2.59 % 26.06 % 4.88 % 50.72 % missing missing 5.49 % 48.85 % 

Tanzania 

2008 32.21 % 14.52 % 47.11 % missing missing missing missing 13.99 % 45.45 % 
2010 36.70 % 21.52 % 60.74 % missing missing missing missing 10.00 % 28.29 % 
2012 32.78 % 19.91 % 62.79 % missing missing missing missing 9.86 % 31.05 % 
2014 23.96 % 11.38 % 49.72 % missing missing missing missing 8.05 % 35.00 % 
2019 40.89 % 25.80 % 65.03 % missing missing missing missing 12.39 % 31.21 % 

All 
countries 2008 – 2019 36.34 % 22.17 % 61.66 % 6.80 % 14.44 % 10.49 % 31.31 % 6.30 % 16.83 % 

Note: some questionnaires (the IHPS, for example) allow respondents to report multiple shock types on a single plot. 
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Table 2: Mean fraction of potential  harvest lost at the plot level, by country-year 

Country Year 
Mean fraction of 
potential harvest 

lost, all plots 

Mean fraction 
of potential 
harvest lost, 

on plots 
affected by 

drought 

Mean fraction 
of potential 
harvest lost, 

on plots 
affected by 

floods 

Mean fraction 
of potential 
harvest lost, 

on plots 
affected by 

irregular rains 

Mean fraction 
of potential 
harvest lost, 

on plots 
affected by 

pests  

Ethiopia 
2013 - 2014 48.66% 53.46 % missing  49.36 % 45.22 % 
2015 - 2016 54.84% 59.71 % missing 55.90 % 47.35 % 
2018 - 2019 47.63% 46.91 % missing 47.65 % 42.36 % 

Malawi 2018 - 2019 55.00% 57.17 % 62.65 % 49.79 % 49.26 % 

Mali 2014 48.08% 48.37 % missing 38.11 % 40.73 % 
2017 47.96% 47.50 % missing 35.75 % 66.73 % 

Niger 2011 71.09% 71.79 % 77.53 % missing 66.96 % 
2014 49.33% 52.90 % 56.79 % missing 40.97 % 

Nigeria 2019 56.38% 36.38 % 61.87 % missing 30.71 % 
All countries 2011 – 2019 53.49% 56.75 % 62.28 % 51.52 % 46.52 % 

Note: only point estimates are reported. Plots with no losses are excluded. Sample weights are used to calculate estimates. 
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Table 3: Linear trend in shock exposure and size 

  (1) (2) (3) 
  Any loss Percent lost Percent lost 
  Full sample With any loss Full sample 
        
Year 0.00829*** -1.137** 0.0986 
  (0.00231) (0.519) (0.368) 
Constant  2,344** -178.4 
   (1,047) (741.5) 
        
Observations 121,983 31,746 91,280 
Country FE YES YES YES 
Note: Marginal effects from logit regression (Column 1) and results from OLS regressions (Columns 2 and 3). Columns 1 and 
3 are unconditional, column 2 is conditional on any loss on the plot. The estimates are weighted to be nationally 
representative. Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table 4: Total fraction of aggregate potential harvest lost, by country-year 

Country Year Fraction of total potential harvest 
lost in shocks 

Ethiopia 
2013 - 2014 15.14 % 
2015 - 2016 34.63 % 
2018 - 2019 31.52 % 

Malawi 2018 - 2019 46.53 % 

Mali 2014  7.59 % 
2017 8.22 % 

Niger 2011 81.12 % 
2014 29.24 % 

Nigeria 2019 3.19 % 
Pooled 2011-2019 28.57 % 

Note: Sample weights are used to calculate estimates. Current prices are used to value losses and attainable harvest 
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Table 5: Share of households affected by multiple disaster shocks on their plots 

Country Year 
Percent of households that 
report disaster losses from 

multiple sources 
Ethiopia 2011 – 2012 8.99 % 
Ethiopia 2013 - 2014 12.58 % 
Ethiopia 2015 - 2016 20.92 % 
Ethiopia 2018 - 2019 21.02 % 
Malawi  2012 - 2013 4.50 % 
Malawi 2015 - 2016 15.03 % 
Malawi 2018 - 2019 15.05 % 
Tanzania 2008 5.09 % 
Tanzania 2010 4.25 % 
Tanzania 2012 3.04 % 
Tanzania 2014 1.46 % 
Tanzania 2019 4.52 % 

Note: Sample weights are used to calculate estimates. Only waves which allow the reporting of multiple shock types on each 
listed crop are retained. 
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Table 6: Loss size by shock type 

  (1) (2) (3) (4) (5) 
Dependent variable: Percent of harvest lost Ethiopia Malawi Mali Niger Nigeria 
            
Drought 6.570*** 7.767*** 2.536 3.183 -4.939 
  (1.853) (2.668) (3.966) (2.235) (4.152) 
Pests 5.955*** -4.283 11.48* -6.561** -10.28** 
  (1.731) (2.867) (6.384) (2.710) (4.711) 
Flood  15.11***  -1.935 9.263* 
   (2.995)  (5.656) (4.984) 
Constant 34.08*** 47.68*** 45.31*** 64.71*** 31.80*** 
  (1.145) (1.944) (3.875) (2.292) (4.936) 
       
Observations 10,478 2,180 7,389 6,537 449 
Crop FE YES YES YES YES YES 
Survey Wave FE YES YES YES YES YES 
Note: Results from OLS regressions with the share of potential harvest lost as outcome variable. Base category for shock 
dummies is other shock. The estimates are weighted to be nationally representative. Standard errors in parentheses. *** 
p<0.01, ** p<0.05, * p<0.1 
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Table 7: Heterogeneity in disaster exposure by plot characteristics 

  (1) (2) (3) (4) (5) (6) (7) 
Dependent variable: Any disaster loss on plot Pooled Ethiopia Malawi Mali Niger Nigeria Tanzania 
                
Any hired labor on plot -0.0151 -0.00717 -0.0513*** -0.000535 -0.0291 -0.00315 -0.0130 
  (0.0111) (0.0242) (0.0167) (0.0142) (0.0205) (0.0217) (0.0151) 
Any inorganic fertilizer used -0.0445*** -0.0482** 0.0236 -0.0621*** -0.0527* -0.0357** -0.0885*** 
  (0.0109) (0.0187) (0.0161) (0.0171) (0.0289) (0.0154) (0.0290) 
Any organic fertilizer used 0.0285*** 0.0666*** 0.0382** -0.00299 -0.00833 -0.0106 -0.0126 
  (0.0105) (0.0195) (0.0158) (0.0160) (0.0255) (0.0188) (0.0266) 
Plot is irrigated -0.00339 0.000150 -0.0647 -0.201*** -0.169*** 0.00297 0.0370 
  (0.0211) (0.0334) (0.0592) (0.0461) (0.0535) (0.0305) (0.0502) 
Plot is intercropped 0.0491*** 0.0353 0.146*** -0.0335 -0.0271 -0.0221 0.0419** 
  (0.0117) (0.0242) (0.0181) (0.0292) (0.0364) (0.0164) (0.0207) 
Plot is owned -0.000302 0.0200 -0.00111 -0.0542** -0.0529 -0.0296 -0.00966 
  (0.0121) (0.0199) (0.0215) (0.0246) (0.0329) (0.0184) (0.0234) 
Log plot area (ha) 0.00875*** 0.00983* 0.0219*** 0.000514 -0.0272*** -0.0122* 0.0339*** 
  (0.00333) (0.00504) (0.00568) (0.00562) (0.00835) (0.00677) (0.00803) 
Plot topographic wetness index 0.00731*** 0.00315 0.00503 0.00210 0.00349 0.00134 0.0121*** 
  (0.00165) (0.00407) (0.00345) (0.00244) (0.00267) (0.00161) (0.00225) 
Plot elevation (m) -9.16e-05*** -8.41e-05*** -0.000371*** -0.000299** -0.000172 -2.12e-05 -6.58e-05*** 
  (1.60e-05) (2.64e-05) (3.41e-05) (0.000131) (0.000186) (4.61e-05) (2.37e-05) 
Urban household -0.0211 0.00330 -0.115*** -0.0356 0.0446 -0.0212 0.0273 
  (0.0206) (0.0529) (0.0410) (0.0484) (0.0472) (0.0249) (0.0291) 
Household engaged in livestock farming 0.00545 0.0210 -0.00556 0.0271 -0.145*** -0.0153 0.0398** 
  (0.0101) (0.0211) (0.0133) (0.0203) (0.0466) (0.0182) (0.0173) 
Household has access to electricity 0.0711*** 0.120*** 0.0173 -0.0240 -0.0302 0.00143 0.0195 
  (0.0161) (0.0241) (0.0283) (0.0167) (0.0493) (0.0197) (0.0358) 
Observations 116,773 39,801 17,900 31,257 9,004 6,623 12,187 
Crop FE YES YES YES YES YES YES YES 
Country FE YES NO NO NO NO NO NO 

Note: Average marginal effects from multivariate logit regressions. Base category for crop fixed effects is 'other crop'. The estimates are weighted to be nationally representative. Standard errors in 
parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table 8: Heterogeneity in loss size by plot characteristics 

  (1) (2) (3) (4) (5) (6) 
Dependent variable: Percent of harvest lost Pooled Ethiopia Malawi Mali Niger Nigeria 
              
Any hired labor on plot -5.120*** -3.632 -3.179 -0.707 -4.162*** -9.870* 
  (1.762) (2.236) (3.237) (1.977) (1.454) (5.065) 
Any inorganic fertilizer used -8.073*** -7.744*** -2.133 -15.47*** -4.415** -17.28*** 
  (1.512) (1.885) (1.885) (2.563) (1.955) (4.320) 
Any organic fertilizer used 0.707 3.476* -3.111** -4.282** -6.589*** -8.291** 
  (1.315) (1.842) (1.522) (2.106) (1.183) (4.103) 
Plot is irrigated 3.450 1.126 9.046 -20.15*** 4.865 14.80* 
  (3.063) (3.636) (14.07) (6.356) (4.255) (8.736) 
Plot is intercropped -7.513*** -3.781 -1.550 -6.306* -6.367*** -36.05*** 
  (1.754) (2.329) (2.454) (3.550) (1.773) (4.865) 
Plot is owned -1.945 -2.300 6.057* -2.874 -2.586 -3.114 
  (1.556) (2.017) (3.122) (3.702) (1.645) (4.379) 
Log plot area (ha) -2.565*** -2.782*** -4.610*** -0.255 -0.599 0.394 
  (0.410) (0.497) (1.109) (0.686) (0.427) (1.383) 
Plot topographic wetness index 0.263 0.576* 0.0928 0.993*** 0.0383 0.0686 
  (0.206) (0.301) (0.434) (0.344) (0.249) (0.451) 
Plot elevation (m) -0.00727*** -0.00650*** -0.0250*** -0.0179 -0.00721 0.00584 
  (0.00214) (0.00228) (0.00404) (0.0187) (0.0108) (0.00892) 
Urban household 4.463 12.26*** -3.747 5.014 1.584 -5.863 
  (2.772) (2.829) (3.387) (6.587) (2.659) (5.539) 
Household engaged in livestock farming -2.395 1.289 0.157 3.039 -9.035*** -2.391 
  (1.733) (2.353) (1.820) (3.219) (2.203) (4.460) 
Household has access to electricity 2.388 1.600 3.479 -1.266 -2.625 5.226 
  (1.946) (2.219) (4.478) (2.336) (2.222) (4.404) 
Constant 64.21*** 53.17*** 61.56*** 55.52*** 84.30*** 104.4*** 
  (6.177) (7.224) (9.642) (10.15) (6.901) (10.39) 
        
Observations 30,845 14,896 2,059 7,130 6,071 689 
Crop FE YES YES YES YES YES YES 
Country FE YES NO NO NO NO NO 
Note: Results from OLS regressions with the share of potential harvest lost as outcome variable. Base category for crop fixed effects is 'other crop'. The estimates are 
weighted to be nationally representative. Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table 9: Heterogeneity in disaster exposure by plot manager characteristics 

  Pooled Ethiopia Malawi Mali Niger Nigeria Tanzania 
  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) 
Dependent variable: 
Any disaster loss on 
plot No control Control No control Control No control Control No control Control No control Control No control Control No control Control 
                              
Female plot manager 0.0222** 0.0267*** 0.00350 0.0126 0.0529*** 0.0272** 0.0843*** 0.0614*** 0.0503* 0.0475* 0.0386* 0.00467 0.0138 0.0355* 
  (0.00939) (0.00904) (0.0171) (0.0169) (0.0137) (0.0123) (0.0237) (0.0215) (0.0293) (0.0280) (0.0207) (0.0165) (0.0201) (0.0186) 
Age of plot manager 
(decades) 0.00727*** 0.00708*** 0.00829* 0.00750* 0.00112 0.00407 0.0124*** 0.0124*** -0.0137*** -0.00896* 0.00774 0.00564 0.0119** 0.00878* 
  (0.00249) (0.00237) (0.00457) (0.00418) (0.00446) (0.00416) (0.00443) (0.00429) (0.00525) (0.00517) (0.00542) (0.00533) (0.00523) (0.00481) 
Plot manager has 
primary educ -0.0140 -0.0138 -0.0176 -0.0258 -0.0467*** -0.00906 -0.0386* -0.0178 -0.0609 -0.0594 0.0186 -0.00118 -0.0216 -0.00847 
  (0.0125) (0.0124) (0.0300) (0.0285) (0.0145) (0.0140) (0.0224) (0.0216) (0.0480) (0.0473) (0.0155) (0.0179) (0.0314) (0.0336) 
                
Observations 115,041 115,041 39,289 39,289 17,123 17,123 31,019 31,019 8,911 8,911 6,591 6,591 12,107 12,107 
Controls NO YES NO YES NO YES NO YES NO YES NO YES NO YES 
Crop FE YES YES YES YES YES YES YES YES YES YES YES YES YES YES 
Country FE YES YES NO NO NO NO NO NO NO NO NO NO NO NO 

Note: Average marginal effects from multivariate logit regressions. Controls include dummy variables for input use (any hired labor, any inorganic fertilizer, any organic fertilizer), plot characteristics (plot area, irrigration, 
intercropping, plot ownership, elevation, and a topographic wetness index), household characteristics (urban/rural residence, livestock farming, and electricity access) as well as main crop and country fixed effects. The estimates are 
weighted to be nationally representative. Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table 10: Heterogeneity in loss size by plot manager characteristics 

  Pooled Ethiopia Malawi Mali Niger Nigeria 
  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 
Dependent variable: 
Percent of harvest lost on plot No controls Controls No controls Controls No controls Controls No controls Controls No controls Controls No controls Controls 
                          
Female plot manager 4.405*** 2.303** 3.345** 1.968 3.952 2.363 5.167 0.988 5.025*** 3.789** 10.76** -0.0518 
  (1.158) (1.136) (1.448) (1.385) (2.383) (2.128) (3.452) (2.895) (1.742) (1.754) (5.463) (6.238) 
Age of plot manager (decades) 0.231 0.285 0.373 0.407 -0.995 0.0282 -0.537 -0.385 -0.382 -0.0241 0.974 -0.303 
  (0.320) (0.315) (0.384) (0.377) (0.871) (0.797) (0.663) (0.544) (0.481) (0.474) (1.837) (1.328) 
Plot manager has primary educ -0.0273 -1.641 -1.508 -3.215 0.497 1.915 -4.344 -1.184 -5.307* -3.501 5.493 -1.332 
  (1.831) (1.686) (2.362) (2.192) (2.893) (2.226) (2.950) (2.775) (2.759) (2.510) (4.983) (5.349) 
Constant 49.31*** 62.68*** 48.94*** 51.42*** 55.91*** 60.52*** 49.98*** 57.01*** 65.99*** 83.15*** 46.19*** 106.0*** 
  (1.923) (6.404) (2.152) (7.456) (4.869) (9.858) (3.617) (10.82) (2.491) (7.111) (10.01) (15.73) 
              
Observations 30,230 30,230 14,680 14,680 1,739 1,739 7,100 7,100 6,027 6,027 684 684 
Crop FE YES YES YES YES YES YES YES YES YES YES YES YES 
Country FE YES YES NO NO NO NO NO NO NO NO NO NO 
Note: Results from OLS regressions with the share of potential harvest lost as outcome variable. Controls include dummy variables for input use (any hired labor, any inorganic fertilizer, any organic fertilizer), plot 
characteristics (plot area, irrigration, intercropping, plot ownership, elevation, and a topographic wetness index), household characteristics (urban/rural residence, livestock farming, and electricity access) as well 
as main crop and country fixed effects. The estimates are weighted to be nationally representative. Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table 11: Heterogeneity in plot endowment and management by gender of the plot manager 

  (1) (2) (3) (4) (5) (6) (7) 
Dependent variable: Female plot manager (dummy) Pooled Ethiopia Malawi Mali Niger Nigeria Tanzania 
Any hired labor on plot 0.0342*** 0.0336** 0.000582 -0.0254** 0.0644*** 0.0473** 0.0560*** 
  (0.00878) (0.0145) (0.0148) (0.0104) (0.0148) (0.0216) (0.0201) 
Any inorganic fertilizer used -0.00474 0.0159 -0.0149 -0.0206 -0.00489 -0.0373** -0.00251 
  (0.00879) (0.0125) (0.0154) (0.0138) (0.0349) (0.0176) (0.0275) 
Any organic fertilizer used -0.0128 0.0127 0.0234 -0.0381*** -0.0375** -0.0367* -0.0167 
  (0.00924) (0.0114) (0.0186) (0.00935) (0.0150) (0.0211) (0.0309) 
Plot is irrigated -0.0332 0.0234 -0.0671 -0.0956*** -0.244** -0.0418 -0.0718 
  (0.0246) (0.0339) (0.0703) (0.0274) (0.100) (0.0610) (0.0489) 
Plot is intercropped 0.0184** -0.0168 0.0698*** -0.0224 -0.0544*** 0.0287** 0.0430* 
  (0.00844) (0.0149) (0.0129) (0.0225) (0.0206) (0.0144) (0.0225) 
Plot is owned 0.0268*** 0.0907*** 0.0897*** -0.00327 -0.0335** -0.00298 -0.00916 
  (0.00988) (0.0173) (0.0239) (0.0189) (0.0148) (0.0181) (0.0195) 
Log plot area (ha) -0.0423*** -0.0245*** -0.0524*** -0.0229*** -0.0461*** -0.0498*** -0.0619*** 
  (0.00258) (0.00297) (0.00706) (0.00363) (0.00667) (0.00567) (0.00795) 
Plot topographic wetness index 0.00105 -0.00154 0.00110 0.00154 -0.00162 -0.000648 0.00310 
  (0.00141) (0.00271) (0.00386) (0.00135) (0.00156) (0.00176) (0.00323) 
Plot elevation (m) -2.96e-05** 2.91e-07 -9.40e-05*** -0.000297*** 0.000227** -0.000188* -5.01e-06 
  (1.17e-05) (1.59e-05) (3.27e-05) (5.32e-05) (0.000110) (9.64e-05) (2.13e-05) 
Urban household 0.00322 0.0744** 0.0166 -0.0568** -0.0634* -0.0347 0.0214 
  (0.0153) (0.0356) (0.0350) (0.0274) (0.0378) (0.0281) (0.0268) 
Household engaged in livestock farming -0.0888*** -0.142*** -0.103*** 0.00674 -0.00526 -0.00275 -0.0921*** 
  (0.00932) (0.0152) (0.0147) (0.0124) (0.0200) (0.0202) (0.0195) 
Household has access to electricity -0.00878 -0.0308** -0.0621* 0.00794 -0.0857** 0.0115 -0.0408 
  (0.0115) (0.0144) (0.0345) (0.00813) (0.0384) (0.0205) (0.0333) 
                
Observations 118,311 40,243 17,932 31,138 8,803 7,773 12,307 
Crop FE YES YES YES YES YES YES YES 
Country FE YES NO NO NO NO NO NO 

Note: Average marginal effects from multivariate logit regressions. Base category for crop fixed effects is 'other crop'. The estimates are weighted to be nationally representative. Standard errors in 
parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table 12: Heterogeneity in drought reports within enumeration areas, by crop type 

    Drought 
    All crops Maize Sorghum Millet 

Ethiopia 

2011-2012 39.4 16.1 18.6 13.3 
2013-2014 43.8 26.3 24.9 12.7 
2015-2016 55.8 34.3 29.0 23.3 
2018-2019 48.6 27.7 26.9 10.5 

Malawi 

2009-2010 62.6 58.4 76.0 30.0 
2012-2013 25.7 28.0 36.2 30.0 
2015-2016 33.0 36.3 43.2 40.0 
2018-2019 17.5 11.7 20.5 16.7 

Mali 2014 29.7 13.9 20.6 14.4 
2017 44.5 28.1 32.2 32.2 

Niger 2011 78.6 41.7 68.1 82.4 
2014 66.4 28.6 62.6 63.6 

Nigeria 2019 20.7 8.9 7.6 6.4 

Tanzania 

2008 55.9 51.9 0.0 50.0 
2010 59.3 57.6 58.1 55.6 
2012 46.9 44.4 37.9 26.3 
2014 32.1 29.7 66.7 50.0 
2019 42.1 44.6 87.5 33.3 

All countries All years 41.1 31.1 31.5 32.1 

Note: Share of enumeration areas with heterogenous drought reports, pooled and by crop type. Heterogeneous reports are 
defined as enumeration areas where at least one plot recorded a drought loss and at least one plot did not. Columns 2, 3, and 
4 compare only plots that grew the same crop. Enumeration areas with only a single plot with the crop are excluded. 
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Table 13: Mean frequency of plots with drought shocks within household, conditional on at least one drought shock being 
recorded 

Country Survey 

Mean drought shock 
frequency of plots with 
the same crop within 

household 
Restricted to plots with 

maize 

Mean drought shock 
frequency of plots with 
the same crop within 

household 
Restricted to plots with 

maize 
  (1) (2) 

Ethiopia 2011 – 2012 68.75 % n≤10 

Ethiopia 2013 – 2014 62.52 % 70.76 % 

Ethiopia 2015 – 2016 82.33 % 91.07% 

Ethiopia 2018 – 2019 59.68 % 72.81 % 

Malawi 2010 88.08 % 93.52 % 
Malawi 2013 65.77 % 100.00 % 
Malawi 2016 71.77 % 88.89 % 
Malawi 2019 38.89 % 40.00 % 
Mali 2014 65.83 % 69.91 % 

Mali 2017 62.97 % 62.72 % 

Niger 2011 n≤10 90.29 % 

Niger 2014 n≤10 69.01 % 

Nigeria 2019 24.40 % 57.14 % 
Tanzania 2008 – 2009 43.22 % n≤10 
Tanzania 2010 – 2011 52.65 % 67.39 % 
Tanzania 2012 – 2013 56.57 % n≤10 
Tanzania 2014 – 2015 44.25 % n≤10 
Tanzania 2019 – 2020 51.19 % n≤10 
All countries  66.56 % 79.55 % 

Note: These frequencies are conditional on at least one plot with the same crop (maize in col (1) or sorghum in 
col(2)) experiencing a drought shock, the household having more than one crop plot with the same specific crop 
(maize in col (1) or sorghum in col(2)), and a sample size of over 10 observations to calculate shares. 
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Table 14: Share of the national population affected by droughts according to EM-DAT and LSMS-ISA data 

Country Year 
Percent of the 

population affected 
by drought using 
LSMS-ISA data 

Percent of the 
population affected 

by drought using EM-
DAT data 

Ethiopia 

2011 - 2012 7.88 % 
[ 5.73 % ; 10.04 % ] 6.20 % 

2013 - 2014 11.45 % 
[ 8.83 % ; 14.07 % ] missing 

2015 - 2016 32.50 % 
[ 27.33 % ; 37.67 % ] 9.68 % 

2018 - 2019 14.30 % 
[ 10.88 % ; 17.72 % ] missing 

Malawi 

2009 - 2010 23.82 % 
[ 20.44 % ; 27.20 % ] missing 

2012 - 2013 8.98 % 
[ 6.98 % ; 10.98 % ] missing 

2015 - 2016 25.51 % 
[ 19.25 % ; 31.78 % ] missing 

2018 - 2019 7.66 % 
[ 5.06 % ; 10.26 % ] missing 

Mali 
2014 15.89 % 

[ 13.35 % ; 18.43 % ] missing 

2017 24.53 % 
[ 21.54 % ; 27.53 % ] missing 

Niger 
2011 56.14 % 

[ 48.77 % ; 63.50 % ] 17.03 % 

2014 20.78 % 
[ 15.78 % ; 25.78 % ] missing 

Nigeria 2019 2.39 % 
[ 1.49 % ; 3.29 % ] missing 

Tanzania 

2008 12.38 % 
[ 10.55 % ; 14.21 % ] missing 

2010 18.98 % 
[ 16.54 % ; 21.42 % ] missing 

2012 15.38 % 
[ 13.08 % ; 17.68 % ] 2.09 % 

2014 10.27 % 
[ 4.08 % ; 16.45 % ] missing 

2019 16.50 % 
[ 10.07 % ; 22.93 % ] missing 

Note: missing entries correspond to cases where either no event was reported or information on the population affected was 
missing in the EM-DAT. 95% confidence intervals for estimated totals are calculated with LSMS-ISA microdata  
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Table 15: Total estimated value of crop production lost (LSMS-ISA) and total aggregate economic losses (EM-DAT) due to 
droughts 

Country Year 
Total aggregate losses 
due to drought (in 2022 
dollars) in LSMS-ISA 

Total aggregate losses 
due to drought (in 2022 

dollars) in EM-DAT 

Ethiopia 

2013 - 2014 589 million  
[ 281 ; 896 ] missing 

2015 - 2016 2,980 million  
[ 2000 ; 3960 ] 2,134 million 

2018 - 2019 1,354 million  
[ 229 ; 2479 ] missing 

Malawi 2018 - 2019 41 million  
[ 23 ; 60 ] missing 

Mali 
2014 70 million 

 [ 55 ; 85 ] missing 

2017 165 million  
[ 136 ; 194 ] missing 

Niger 
2011 1.583 million  

[ 1294 ; 1871 ] missing 

2014 185 million  
[ 129 ; 241 ] missing 

Nigeria 2019 80 million  
[ 29 ; 131 ] missing 

Note: missing entries correspond to cases where either no event was reported or information on the population affected was 
missing in the EM-DAT. 95% confidence intervals for estimated totals are calculated with LSMS-ISA microdata  
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Table 16: Share of the national population affected by floods according to EM-DAT and LSMS-ISA data 

Country Year 
Percent of the 

population affected 
by floods according 
to LSMS-ISA data 

Percent of the 
population affected 
by floods according 

to EM-DAT data 

Malawi 

2012 - 2013 8.26 % 
[ 5.73 % ; 10.78 % ] 0.95 % 

2015 - 2016 1.18 % 
[ 0.49 % ; 1.87 % ] 3.74 % 

2018 - 2019 22.75 % 
[ 16.37 % ; 29.12 % ] 5.38 % 

Niger 
2011 1.72 % 

[ 0.30 % ; 3.13 % ] 0.24 % 

2014 3.76 % 
[ 1.58 % ; 5.95 % ] 0.85 % 

Nigeria 2019 4.62 % 
[ 3.17 % ; 6.08 % ] 0.03 % 

Note: missing entries correspond to cases where either no event was reported or information on the population affected was 
missing in the EM-DAT. 95% confidence intervals for estimated totals are calculated with LSMS-ISA microdata  
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Table 17: Total estimated value of crop production lost (LSMS-ISA) and total aggregate economic losses (EM-DAT) due to floods 

Country Year 
Total aggregate 
flood loss (2022 

dollars) in LSMS-
ISA 

Total aggregate 
flood loss (2022 
dollars) in EM-

DAT 

Malawi 2018 - 2019 346 million 
[95 ; 598] missing 

Niger 
2011 9 million  

[ 3.00 ; 15 ] missing 

2014 81 million  
[ 0 ; 205 ]* 3 million 

Nigeria 2019 352 million  
[ 208 ; 496 ] missing 

Note: missing entries correspond to cases where either no event was reported or information on the population affected was 
missing in the EM-DAT. 95% confidence intervals for estimated totals are calculated with LSMS-ISA microdata *Negative lower 
bounds were cut at 0. 

  



39 
 

 

Table 18. Estimated combined impacts of drought or flood events captured in LSMS-ISA  

Country Year 

Number of 
individuals 
affected by 
droughts 
and/or 
floods 

Share of 
total 

population 
affected by 
droughts 
and/or 
floods 

Value of 
damages 

from 
droughts 
and/or 
floods 

Number of 
individuals 
affected by 
droughts 
and/or 
floods 

Share of 
total 

population 
affected by 
droughts 
and/or 
floods 

Value of 
damages 

from 
droughts 
and/or 
floods 

  LSMS-ISA LSMS-ISA LSMS-ISA EM-DAT EM-DAT EM-DAT 

Ethiopia 

2011 - 
2012 

7.4 million  
[ 5.4 ; 9.5 ] 

7.9 %  
[ 5.7 % ; 10.0 

% ] 
 5.846 million 6.30 %  

2013 - 
2014 

11.4 million 
 [ 8.8 ; 14.0 ] 

11.4 %  
[ 8.8 % ; 14.1 

% ] 

589.6 million  
[ 280.9 ; 898.2 

] 
52 thousand 0.10 % 3.5 million 

2015 - 
2016 

34.2 million  
[ 28.8 ; 39.6 ] 

32.5 % 
 [ 27.4 % ; 
37.6 % ] 

2,981.3 
million 

 [ 1,999.0 ; 
3,963.7 ] 

10.904 
million 10.40 % 2,134.4 

million 

2018 - 
2019 

16.3 million 
 [ 13.1 ; 19.5 

] 

14.3 % 
 [ 11.5 % ; 
17.1 % ] 

1,355.7 
million  

[ 227.9 ; 
2,483.4 ] 

200 
thousand 0.20 %  

Malawi 

2009 - 
2010 

3.5 million 
 [ 3.0 ; 4.0 ] 

23.8 %  
[ 20.5 % ; 
27.1 % ] 

 
38 thousand 0.30 %  

2012 - 
2013 

2.6 million  
[ 2.2 ; 3.1 ] 

16.5 %  
[ 13.5 % ; 
19.5 % ] 

 
2.05 million 13.00 %  

2015 - 
2016 

4.6 million 
 [ 3.5 ; 5.7 ] 

26.4 % 
 [ 20.1 % ; 
32.8 % ] 

 
7.341 million 42.40 % 594.6 million 

2018 - 
2019 

5.4 million 
 [ 4.1 ; 6.7 ] 

28.5 %  
[ 21.5 % ; 
35.4 % ] 

379.9 million  
[ 123.0 ; 636.7 

] 
1.001 million 5.40 %  

Mali 2014 
2.8 million 
 [ 2.4 ; 3.2 ] 

15.9 % 
 [ 13.4 % ; 
18.4 % ] 

70.0 million 
 [ 54.7 ; 85.3 ] 

No entry   

2017 
4.7 million 
 [ 4.2 ; 5.3 ] 

24.5 % 
 [ 21.7 % ; 
27.4 % ] 

164.7 million 
 [ 135.4 ; 
194.0 ] 

No entry   

Niger 2011 
9.8 million 

 [ 8.5 ; 11.1 ] 
56.7 %  

[ 49.1 % ; 
64.4 % ] 

1,589.9 
million  

[ 1,298.4 ; 
1,881.3 ] 

3.041 million 17.40 %  

2014 
4.7 million 
 [ 3.6 ; 5.8 ] 

24.1 % 
 [ 18.4 % ; 
29.8 % ] 

265.6 million  
[ 129.5 ; 401.7 

] 

166 
thousand 0.90 % 3.1 million 

Nigeria 
2019 

13.6 million 
 [ 10.5 ; 16.7 

] 

6.8 %  
[ 5.3 % ; 8.4 

% ] 

427.5 million 
 [ 274.4 ; 
580.6 ] 

71 thousand 0.00 % 0.0 million 

Tanzania 

2008 
5.3 million 
 [ 4.5 ; 6.1 ] 

12.4 % 
 [ 10.6 % ; 
14.2 % ] 

 
10 thousand 0.00 %  

2010 
8.6 million 
 [ 7.5 ; 9.7 ] 

19.0 %  
[ 16.5 % ; 
21.4 % ] 

 
50 thousand 0.10 %  

2012 
7.3 million 
 [ 6.3 ; 8.4 ] 

15.4 % 
 [ 13.1 % ; 
17.7 % ] 

 
1.0 million 2.10 %  
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2014 
5.2 million 
 [ 2.1 ; 8.4 ] 

10.3 % 
 [ 4.1 % ; 
16.5 % ] 

 
40 thousand 0.10 % 3.1 million 

2019 
9.9 million  

[ 6.2 ; 13.6 ] 
16.5 %  

[ 10.4 % ; 
22.6 % ] 

 
5 thousand 0.00 %  

All 
countries 

2008 - 
2019 

157.0 million 
[ 144.6 ; 
170.3 ] 

 

7,824.2 
million  

[ 6,168.6 ; 
9,479.8 ] 

31.814 
million  2,738.6 

million 

Note: both point estimates and 95% confidence intervals are reported 
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Table 19. Overview of disaster loss information availability in the LSMS-ISA microdata 

Country Year Ability to quantify 
partial losses 

List of disaster shocks 
options provided in the 
dataset 

Ethiopia 

2011 - 2012 No Drought; Rains: Fire; 
Insects; Crop disease; 
Locusts; Hail 

2013 - 2014 Yes 
2015 - 2016 Yes 
2018 - 2019 Yes 

Malawi 

2009 - 2010 No Drought; Irregular rains; 
Floods (not in wave 1); Fire; 
Insects; Disease 

2012 - 2013 No 
2015 - 2016 No 
2018 - 2019 Yes 

Mali 2014 Yes Drought; Rains; Fire; 
Insects; Disease 2017 Yes 

Niger 2011 Yes Insects and bird attacks; 
Plant illness; Drought; Flood 2014 Yes 

Nigeria 2019 Yes Drought; Flood; Pest;  

Tanzania 

2008 No 

Drought; Rain; Fire; Insects 
2010 No 
2012 No 
2014 No 
2019 No 
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Appendix A: Comparison of data from disaster inventories and microdata 

Data from disaster inventories such as EM-DAT and from microdata such as the LSMS-ISA differ in a 
number of meaningful ways. This includes their coverage of different shock types and sizes, the affected 
population, and time frame, as well as their detail, accuracy, and comparability across countries. These 
dimensions determine the respective strengths and weaknesses of each data source and can give rise to 
differences in estimates of disaster incidence and severity. 

Disaster inventories collate reports from a variety of data sources on a per-event basis and are subject to 
the coverage and detail of information provided in these underlying sources.37 Typically, this data comes 
aggregated, most often at the country-level. On the other hand, microdata, in our case, is based on 
household surveys that interview a sample from the target population and population-level estimates are 
formed based on this sample. 

 

Shock coverage 

Coverage of shocks in disaster inventories varies depending on the underlying source data for each event. 
While large, salient shocks are likely reported across one or more sources that disaster inventories rely on 
(such as news reports or data bases from international organizations) and are therefore likely covered in 
disaster inventories, this is somewhat less likely for small or idiosyncratic shocks.30,37 Such small shocks 
may therefore go unrecorded. For similar reasons, some shock types are more likely to be covered in 
disaster inventories than others.37,42  
 
Conversely, microdata is based on reports directly elicited from those affected by the shocks in question. 
They are therefore more granular and able to cover small and localized shocks. At the same time, shock 
recording in microdata sources is subject to the design of the survey questionnaire such as the list of 
shocks covered, and the number of shocks recorded. 
 
Population coverage 
Disaster inventories are not limited to a specific population of interest and can, in principle, cover any 
event affecting any population group so long as this is reported in a source the disaster inventory can 
draw on. The lack of an explicit focus and reliance on reports from underlying sources, in turn, means that 
coverage for poor and marginalized population groups is more likely to be incomplete. 

Microdata from household surveys focuses on (stratified) samples from a well-defined target population. 
In the case of the LSMS-ISA surveys, the samples are typically drawn to be nationally representative of the 
general population at the national and sub-national levels, and of urban and rural areas. This means that 
even poor and marginalized populations can be explicitly covered. At the same time, coverage is limited 
to the sample and affected by gaps in coverage wherever the sample is not fully representative of the 
population affected by a shock. 

 

Temporal coverage 
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A major strength of disaster inventories is their ability to record shocks at any time they occur so long as 
they get reported. Over the long run, this means that coverage of shocks improves as shock recording in 
underlying sources gets more exact and comprehensive.37 In contrast, temporal coverage in microdata is 
intermittent: limited to the years in which the survey is implemented and the recall period of the survey. 

 

Detail of available information 

The breadth of coverage in disaster inventories across time and space often comes at the cost of limited 
detail and missing information.30,37,48 This particularly concerns the economic and welfare impact of 
shocks which are often difficult to quantify, especially so for uninsured damages.37,40 Detail and 
completeness of the available information in disaster repositories is thus related to the size and salience 
of a shock. Further, the data provided in disaster inventories typically offers little opportunity for 
disaggregation, be it by affected population groups, geographies, or other key variables. As a 
consequence, disaster inventories often lack sufficient information to quantify disaster impacts on (asset-
) poor but highly vulnerable population groups.21 

As microdata sources elicit shock reports directly from those affected by them, they offer a high level of 
detail and completeness of information even for small or idiosyncratic events, for shocks that affect poor 
or marginalized population groups, and for their impact on uninsured damages and other, less salient 
domains of disaster impact. Depending on the design of the survey, shock and impact recording is often 
highly granular and allows for disaggregation and analysis along a broad range of ancillary information 
collected in the survey. 

 

Accuracy of data 

Data recorded in disaster inventories typically relies on reports from one or few sources. Especially where 
events are small and therefore only reported in a single data source, this exposes disaster inventories to 
possible inaccuracies in the source from which information is drawn.37 Even though reports of the number 
of people affected and the economic impact of any disaster are almost always estimates, disaster 
inventories rarely provide information that quantifies the uncertainty associated with any individual or 
collection of estimates. 

Estimates from microdata, on the other hand, are based on a large number of data points collected from 
the population of interest. This also allows to explicitly quantify (part of) the uncertainty inherent in 
estimates of disaster impact. While the large samples underlying estimates from microdata attenuate the 
effect of inaccuracies in individual data points, microdata, as any data source, is still subject to possible 
systematic measurement error. 

 

Comparability of source data 

Disaster inventories, and EM-DAT in particular, stand out for their broad coverage of events across 
geographies and time. To achieve this, disaster inventories need to rely on a wealth of different sources 
that vary according to their reliability, reporting standards, and definitions. Such idiosyncrasies are seldom 
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explicit in collated records as part of disaster inventories but limit the comparability of data across 
different events and contexts.37 

Within the same survey, information collected in microdata is typically harmonized and comparable 
across events covered. While microdata are subject to differences in survey and questionnaire design 
across contexts, such differences are usually explicit. Analysts can therefore take these differences into 
account when making comparisons and there is scope for harmonization across contexts as in the case of 
the LSMS-ISA suite of surveys. 

 

Geographical differences 

Many of the previously discussed sources of inaccuracies in estimates of disaster incidence and severity 
are more pronounced in low- and middle-income countries (LMICs).21,30,37,42 This goes in particular for data 
from disaster inventories that depend on the comprehensiveness of coverage in the underlying data 
sources they draw on. For example, the density of information on shocks and natural disasters is lower in 
LMICs meaning that shocks are more likely to go unreported, information is more likely to be incomplete 
or inaccurate, poor and marginalized population groups are more likely not to be covered, and the impact 
on them is more likely to be underestimated due to a higher share of uninsured damages and a lower 
value of affected assets. On the side of microdata, surveys in high-income countries may provide more 
accurate data due to the availability of more sophisticated measurement approaches and higher levels of 
education among respondents which may positively affect the accuracy of self-reported information. 

 

  

Dimension Disaster Inventories Microdata 
Coverage 

Shock coverage 
(Threshold and hazard 

bias) 

• Subject to reporting in aggregate data 
sources and reports 

• Salient shocks likely covered but data 
less sensitive to idiosyncratic or small 
shocks 

• Coverage varies by shock type 

• Based on “grassroots” reports elicited 
from those affected by shocks 

• Granular and able to cover small and 
localized shocks 

• Shock recording subject to questionnaire 
design (list of shocks, number of shocks 
recorded) 

Population coverage 
(Population coverage 

biases) 

• Coverage depending on 
comprehensiveness of coverage in 
underlying data sources (e.g. news 
reports) but not limited to a specific 
population of interest 

• under-coverage of poor and 
marginalized population groups within 
countries likely 

• Limited to (stratified) sample of target 
population 

• Potential for gaps in coverage wherever 
shock impacts not well represented by 
sample 

• Poor and marginalized population groups 
explicitly covered 

Temporal coverage 
(Temporal coverage 

biases) 

• Continuous coverage but subject to 
improvements in quality of reports in the 
long run 

• Intermittent coverage limited to years in 
which survey was conducted and/or 
recall period of survey questions  

Detail and accuracy 
Detail of available 

information 
(Missing data biases) 

• Dependent on information reported in 
sources, limited detail and frequently 
missing information in some dimensions 

• High level of detail and completeness of 
data collected, even for small and 
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of shock impacts (e.g. economic and 
welfare impacts) 

• Detail and completeness of information 
related to size and salience of shock 

• No or limited ability to disaggregate 
information 

• Incomplete recording of uninsured 
damages 

• Lack of information to quantify impact 
on (asset-)poor but highly vulnerable 
population groups 

idiosyncratic shocks as well as poor or 
vulnerable population groups 

• Information collected at highly 
disaggregated level but can be 
aggregated 

• Available information subject to survey 
design 

Accuracy of data 
(Accounting biases) 

• Regularly relying on one or few sources 
per event and exposed to measurement 
error therein 

• Usually based on approximations 
without ability to quantify uncertainty or 
accuracy 

• Estimation based on (large) sample from 
population of interest 

• Explicit quantification of uncertainty in 
estimates 

• Subject to systematic (non-classical) 
measurement error 

Comparability of 
source data 

• Broad coverage across geographies and 
time 

• Exposed to idiosyncrasies in reporting 
protocols between different data sources 
without them typically being explicit 

• Increased scope for harmonized data 
collection across contexts 

• Idiosyncrasies in data collection between 
different microdata sources are explicit  

Geographical differences 

Geographical 
differences 

• Lower information density in LMICs 
and lower ability to draw on ancillary 
data sources for shock recording 

• Systematic under-coverage of events and 
marginalized population groups in 
LMICs 

• Lower accuracy of data due to lower 
density of (independent) sources of 
information 

• Underestimation of impacts in LMICs 
due to higher share of uninsured 
damages and low value of affected goods 
and assets 

•  Potentially greater accuracy of 
microdata in HICs due to use of more 
sophisticated measurement approaches 
and higher levels of education among 
respondents 
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Appendix B: Estimated impact for floods or droughts, and for all shocks, in the LSMS-ISA 

 

Table B1. Estimated impact of all adverse shocks captured in the LSMS-ISA  

Country Year 
Estimate number of 
individuals affected 

by all shocks 

Estimate share of 
total population 
affected by all 

shocks 

Estimate damages 
from all shocks 

Ethiopia 

2011 - 2012 
14 million 
[ 12 ; 17 ] 

15.00 % 
[ 12.40 % ; 17.60 % ]  

2013 - 2014 
34 million 
[ 30 ; 39 ] 

34.20 % 
[ 29.80 % ; 38.60 % ] 

34 million 
[ 30 ; 39 ] 

2015 - 2016 
52 million 
[ 46 ; 57 ] 

49.30 % 
[ 43.90 % ; 54.60 % ] 

52 million 
[ 46 ; 57 ] 

2018 - 2019 
31 million 
[ 27 ; 36 ] 

27.60 % 
[ 23.60 % ; 31.60 % ] 

31 million 
[ 27 ; 36 ] 

Malawi 

2009 - 2010 
6 million 
[ 5 ; 6 ] 

39.00 % 
[ 34.20 % ; 43.90 % ]  

2012 - 2013 
6 million 
[ 5 ; 7 ] 

36.40 % 
[ 32.00 % ; 40.80 % ]  

2015 - 2016 
9 million 
[ 7 ; 11 ] 

52.30 % 
[ 41.70 % ; 62.80 % ]  

2018 - 2019 
9 million 
[ 7 ; 11 ] 

49.30 % 
[ 39.00 % ; 59.50 % ] 

9 million 
[ 7 ; 11 ] 

Mali 2014 
4 million 
[ 3 ; 4 ] 

21.90 % 
[ 18.90 % ; 25.00 % ] 

4 million 
[ 3 ; 4 ] 

2017 
5 million 
[ 4 ; 6 ] 

26.20 % 
[ 23.10 % ; 29.30 % ] 

5 million 
[ 4 ; 6 ] 

Niger 2011 
12 million 
[ 11 ; 13 ] 

70.80 % 
[ 63.70 % ; 77.90 % ] 

12 million 
[ 11 ; 13 ] 

2014 
7 million 
[ 6 ; 8 ] 

36.70 % 
[ 30.00 % ; 43.40 % ] 

7 million 
[ 6 ; 8 ] 

Nigeria 2019 
18 million 
[ 15 ; 22 ] 

9.20 % 
[ 7.50 % ; 11.00 % ] 

18 million 
[ 15 ; 22 ] 

Tanzania 

2008 
11 million 
[ 10 ; 12 ] 

25.20 % 
[ 22.50 % ; 28.00 % ]  

2010 
14 million 
[ 13 ; 15 ] 

30.80 % 
[ 27.80 % ; 33.90 % ]  

2012 
11 million 
[ 10 ; 13 ] 

23.90 % 
[ 21.00 % ; 26.90 % ]  

2014 
9 million 
[ 5 ; 14 ] 

18.30 %  
[ 9.90 % ; 26.60 % ]  

2019 
14 million 
[ 10 ; 19 ] 

23.70 %  
[16.20 % ; 31.20 % ]  

All countries 2008 - 2019 268 million 
[ 251 ; 285 ]  

10,611 million 
 [ 8,892 ; 12,330 ] 

Note: both point estimates and 95% confidence intervals are reported 
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